Annals of Agric. Sc., Moshtohor, Vol. 34(3),1177-1187, 1996.

SURVEY AND POPULATION DYNAMICS OF COMMON TRUE SPIDERS IN EGYPTIAN COTTON FIELDS BY

El-Heneidy, A.H.; Amira A. Ibrahim; Fayad, Y.H. and Moawad, G.M.

Plant Protection Research Institute, ARC, Giza, EGYPT

ABSTRACT

Survey and population dynamics of common true spiders in untreated cotton fields in Egypt were studied at Sakha and Mallawi research stations in the three successive seasons, 1991-93. Visual counts and collections of true spiders associated with cotton pests were taken weekly in the two locations. Field observations on the efficiency of the true spiders were recorded. The survey revealed about 17 genera belong to 10 families prey on cotton pests in the two areas. Specimens were identified by the specialists at the universities of New Mexico and Texas A&M, USA. Population of the true spiders started and ended the seasons higher at Sakha, while it was higher in the mid-months at Mallawi. August represented the highest numbers counted in the two working sites. Lynx group species predominated the other groups, represented by 48.7%, while the others; Webbing, Jumping and Crab were represented by 21, 13.7 and 16.5%, respectively.

Key Words: Cotton, True Spiders, Survey, Population Dynamics, Egypt.

INTRODUCTION

Few studies have been implemented on the spiders in Egypt. Many species of true spiders may be considered as promising biological control agents for a wide group of pests.

Systematically, the true spiders belong to order Araneae which contains about 50,000 identified species. Most of the true spiders are carnivorous. The true spiders are characterized under four groups; Lynx, Jumping, Webbing and Crab. (Ellington 1994)

In Egypt, many authors have reported true spiders in cotton and maize fields as efficient insect predators feed on different stages of the cotton leaf-worm, boll-worms, white flies and corn borers. (El Heneidy et al., 1978, Ibrahim and Fayad 1981) and they are the least group of predators affected by the insecticides(Fayad and Ibrahim, 1981 and 1986; Fayad et.al., 1990).

The present study was conducted as an Egyptian - American collaborative Research Program on cotton IPM Under the National Agricultural Research Project (NARP) financed by USAID. The main objective of the study is to survey the true spiders in cotton fields in Egypt and their population dynamics with a preliminary attempt for their identification. This could be the first step leads interested researchers to continue and come out with more advanced classifications for this group.

METHODS AND TECHNIQUE

One experimental plot of 12 feddan at Sakha Research Station (Kafr El-Sheik governorate) north Egypt and another of 4 feddans at Mallawi Research Station (Minia governorate) middle south Egypt planted with cotton were chosen for three successive cotton growing seasons, 1991-93. These two research stations are considered as two different distinct agro-ecosystems (EL-Heneidy et. al., 1995). Experimental plots were purposely surrounded by clover and wheat during winter seasons prior to cotton and maize planting to enhance native levels of biocontrol species. During the three seasons, cotton was planted annually around early April. Regular cultural practices were applied. In order to survey and study the population dynamics of common species and/or groups of true spiders, no insecticides were applied in the experimental fields during the three considered seasons.

Specimens of both immature and adult stages of the true spiders associated with pests on the cotton plants and/or on the ground in the two locations were collected and mounted in alcohol 70%. Specimens were sent to the cooperating scientist in New Mexico State University, USA for identifications. Starting few days after seed germination, weekly direct counts of the major characteristic four groups of the true spiders were taken regularly on cotton plants throughout the three growing seasons, The count was continued until harvesting in the two working sites. A stratified sampling technique was used in this study (Legaspi et al., 1989 and Ellington, 1994).

Field observations on the efficiency and behavior of the true spiders against the cotton pests were recorded.

RESULTS AND DISCUSSION

Survey and Identification:

Systematic is a rather subjective exercise and, at each stage of classification, there will always be some organisms which do not fit easily into any particular scheme. The long evolution of spiders, and the scarcity of fossil remains, make them a difficult group to classify, and there have been not less than eighteen different classification systems proposed. For the moment,

spiders belong to the Animal Kingdom, sub -Kingdom Metazoa, class Arachnida. Many insects are phytophagous but most arachnida are predatory. (Jones, D. 1983).

The following list consists of preliminary identification of the true spiders collected from the experimental cotton fields at Sakha and Mallawi Research Stations during 1991 and 1992 seasons. These identifications are in most cases to the Family and Generic levels because of the lack of literature. More precise identifications are still needed, when more literature becomes available. Identification made by the specialists; David B. Richman, New Mexico State University, or D. Allen Dean, Texas A&M University of the USA.

Fam.: Araneidae

Singa sp. (recorded 5 times in the two sites)

Fam.: Clubionidae

Chiracanthium spp. (recorded 15 times in the two sites)

Fam.: Dictynidae (Web spinners)

Dictyna spp. (recorded 14 times in the two sites)

Fam.: Gnaphosidae

Unknown genus (recorded once at Mallawi)

Fam.: Linyphiidae

Unknown genera (recorded 5 times in the two sites)

Fam.: Lycosidae (Wolf spiders)

Paradosa sp. (recorded 7 times in the two sites)
Unknown genus (recorded 3 times in the two sites)

Fam.: Philodromidae (Crab spiders)

Thanatus vulgaris (recorded 15 times in the two sites)

Fam.: Salticidae

Neutha oculata (recorded once at Mallawi)
Salticus sp. (recorded once at Sakha)

Unknown spp. (recorded twice in the two sites)

Fam.: Theridiidae

Steatoda sp. (recorded once at Mallawi)
Theridion spp. (recorded once at Mallawi)

Unknown genera (recorded 3 times in the two sites)

Fam.: Thomisidae (Crab spiders)

Runcinia sp. (recorded 4 times in the two sites)
Thomisus citrinellus (recorded 4 times in the two sites)

Thomisus sp. (recorded once at Mallawi)

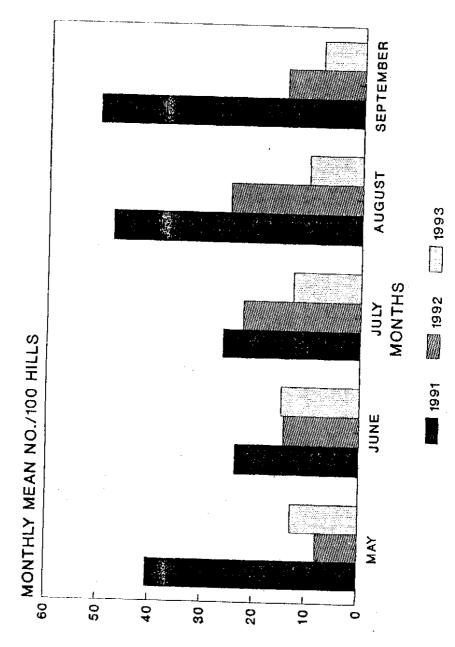
Unknown families recorded 6 times in the two sites (partly damaged specimens).

This may be especially important for members of the genera; Chiracanthium, Dictyna, Runicinia, Paradosa and several species of Linyphiidae and Thiridiidae. The two species of the genus Chiracanthium represented the largest and the smallest species in the collection. Both are

relatively common in the collected samples and may be as important in Egyptian cotton as their close relative, *C. inclusum*, in the United States, where it was found in eight of nine cropping systems so far examined (Young and Edwards, 1990). The Egyptian form bares some resemblance to that found in cropping systems in Yuma County, Arizona, in that it contains *Pardosa*, *Singa or Hypsosinga*, flower -dwelling thomisids, several sulticid genera, linyphiids and species in the genus *Dictyna*. However, in the collection so far seen, the Egyptian cotton fauna seems to lack species in the families Oxyopidae and Tetragnathidae, although species were listed from Egypt (EL-Hennawy, 1990).

Population Dynamics:

Obtained data showed that the true spiders were recorded throughout the three cotton growing seasons in the two areas. Their population varied from one week to another during the seasons and it seems that it has been affected by the cotton growth stages and associated preys. Weekly direct counts of the predators' groups associated with cotton pests during the successive three seasons 1991-93 in both research stations were summarized in Table (1) and Figures 1 and 2. As shown in the table and the figures, the highest total population of the true spider groups was recorded in 1991 season, while the lowest was recorded in 1993 season. Population trend apparently increased almost around mid-season except that of season 1991, when it built up by the end of the season to reach their maximum in August and September. It was also indicated from the table and the figures that the true spiders population was relatively high at the beginning and ending of the season at Sakha, while it was higher during the mid-months at Mallawi. Generally, August represented the highest population means; 27.6 and 26.2 individuals/100 hills at Sakha and Mallawi, respectively.

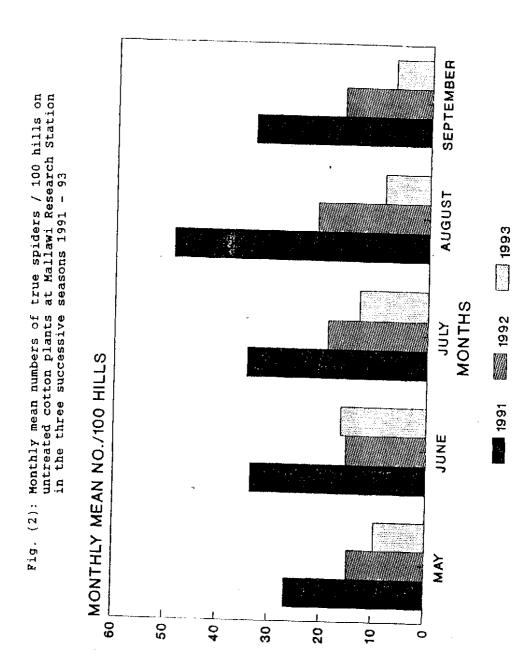
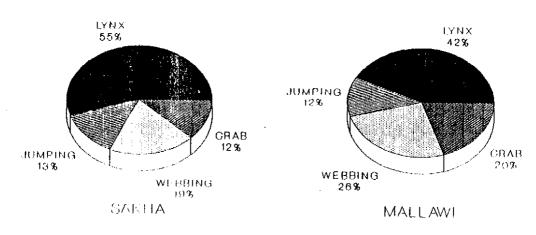
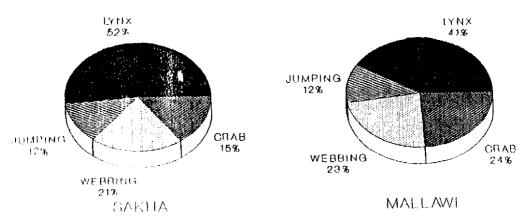

Highest actual numbers of the spiders (85 and 66 individuals/ 100 hills) were recorded once in the second week of May and August of the first season, 1991 at Sakha and Mallawi, respectively. Lowest number (4 spiders/ 100 hills) was recorded in the second week of June, 1992 at Sakha and the third week of September, 1993 at Mallawi.

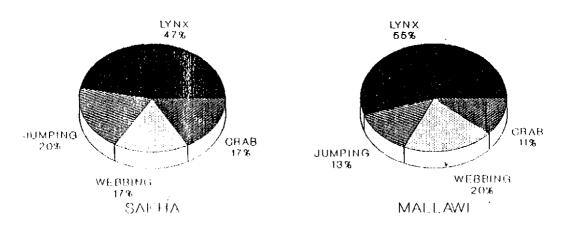
Regarding the population dynamics and abundance of the four groups of the true spiders; Lynx, Jumping, Webbing, and Crab, figure (3) illustrates the percentages of representation of each group in the three seasons and in the two locations of the study. Obtained data showed that:

- Lynx group species apparently predominated the other three groups throughout the period of the study. It was represented by 48.7% of the total population. On the contrary the Jumping group was represented by 13.7%.
- Except the 1993 season, Lynx and Jumping groups populations were mostly higher at Sakha, while the other two groups; Webbing and Crab were higher at Mallawi.
- Jumping species population was always higher at Sakha in correspondence to the Webbing at Mallawi during all seasons.

	untreated cotton fields at Sakha and Mallawi Research Stations in the three successive sersons 1991 - 93	mean nu ed cotto ive sea	untreated cotton fields at Sakha and Mallawi Research Stations in the three successive sersons 1991 - 93	at Sakh - 93	a and Ma	llawi Re	search S	tations	in the t	ree Tree
Season		Мау	'n	June		July	August	1st	Septe	September
	Sak.	MAL.	i	MAL.	Sak. MAL. Sak.	MAL.	Sak.	Sak. MAL.	Sak. MAL.	MAL.
1991	40.5 (8-85)	26.8 (4-51)	40.5 26.8 23.7 33.7 26.2 34.5 47.5 48.8 50.3 33.5 (8-85) (4-51) (17-31) (15-46) (16-37) (17-41) (31-65) (23-66) (31-67) (26-47)	33.7 (15-46)	26.2 (16-37)	34.5 (17-41)	47.5 (31-65)	48.8 (23-66)	50.3	33.5
1992	8.0 (5-11)	14.8 (13-18)	14.8 14.4 15.3 22.4 19.1 25.1 21.3 14.6 16.5 (13-18) (4-30) (11-20) (16-31) (13-24) (21-31) (11-29) (11-19) (11-26)	15.3 (11-20)	22.4 (16-31)	19.1 (13-24)	25.1 (21-31)	21.3 (11-29)	14.6 (11-19)	16.5 (11-26)
1993	12.9 (7-20)	9.8 (7-12)	(7-12) (12-19) (9-22) (10-21) (11-15) (5-13) (6-12) (5-12) (4-11)	16.3	12.9 (10-21)	13.1 (11-15)	10.1 (5-13)	8.5 (6-12)	7.9 (5-12)	6.9 (4-11)
Gen. Mean		17.1	17.7	21.8	20.5	17.7 21.8 20.5 22.2 27.6 26.2 24.3 19.0	27.6	26.2	24.3	19.0

untreated cotton plants at Sakha Research Station in Fig. (1): Monthly mean numbers of true spiders / 100 hills on the three successive seasons 1991 - 93


fig. (3): Relative abundance of true spider groups on untreated cotton plants at Sakha and Mallawi Research Stations in the three successive seasons 1991 - 93

1991 SEASON

1992 SEASON

1993 SEASON

- Lynx population started the seasons always relatively high, declined in the middle and then risen up again by the end of the season. Highest numbers of Lynx species were recorded in May and August at the two sites.
- Jumping' population means ranged between 1 7 individuals/ 100 hills throughout the seasons at the two locations.
- Webbing' population was always higher in the second half of the season at the two locations.
- Crabs' population was mostly higher at the end of the season, particularly during 1991 and 92, but not in the 1993 cotton season.

Field Observations:

Field observations on the activity and feeding behavior of the true spider groups on cotton plants were recorded on both sites to evaluate their predactions efficiency. The observations showed that, true spiders preyed efficiently so far on most of the cotton insect pests such as; immature and adult stages of aphids, white flies, jassids, egg-masses and newly hatched larvae of the cotton leaf worms as well as bollworms larvae inside the opened bolls. However, they were also found preying on the wandering insect predatory species such as; eggs, nymphs and small larvae of *Orius, Scymnus, Chrysoperla and Coccinella* spp.

Webbing species were the most efficient group recorded during the observations because they used easily their spinning web-nets to catch their victims, particularly the flying moths. In this concern, EL-Heneidy et al., 1995 reported highly significant interactions between the true spiders and most of the cotton pests throughout the cotton growth stages.

ACKNOWLEDGMENT

The authors acknowledge the USAID and NARP staff for supporting and financing this study. Thanks are also due to Professors J. Ellington of the new Mexico State University (NMSU), W. Sterling of the Texas A&M University (TX A&M) and Drs. D. Richman (NMSU) and D. Dean (TX A&M) for their assistance in identifying the collected specimens. Appreciation are also due to the directors and staff of Sakha and Mallawi Research Stations as well as colleagues and technicians of the Dept. of Biological Control, Plant Protection Res. Institute for their assistance to carry out this study.

REFERENCES

David, B.R.; Schneider, K.; Sarabia, M.; Carrillo, T.; Dean, D.A. and Ellington, J.(1994): Preliminary key to the spiders of Egyptian cotton. (under publication).

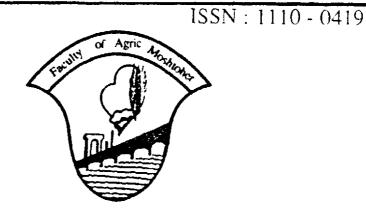
El-Heneidy, A.H., Abbas, M.S. and El-Dakroury, M.S. (1978). Seasonal abundance of certain predators in untreated Egyptian clover and cotton fields in Fayoum Governorate, Egypt. Bull. Soc. Ent. Egypte, 62:91-96.

- El-Heneidy, A.H.; Fayad, Y.H.; Gonzalez, D.; Abdel-Salam, N.M.; Ellington, J. and Moawad, G.M. (1995): Pest Predator Interactions in Untreated Cotton Fields at Three Plant Growth Stages. 1- Location Impact. Egypt. J. Biol. Pest Cont. (in press).
- El-Hennawy, H.K. (1990): A noted checklist of Egyptian spider species (Arachnida: Araneae). Serket 1(4-5): 1 49.
- Ellington, J. (1994): Final report (1990 1994) of the collaborative research project "Cotton IPM with Emphasis on Biological Control of Pink Bollworm" USAID NARP Project in Egypt.
- Fayad, Y.H. and Ibrahim, A.A. (1981). Effect of some new insecticides of cotton leaf-worm on the number of predators in cotton fields. Proc. 1st. Conf. Pl. Prot. Res. Ins. 2:337-348)
- Fayad, Y.H. and Ibrahim, A.A. (1986): Impact of successive insecticidal application at different interval periods on the number of predators in cotton fields. Bull. ent. Soc. Egypt, Econ. Ser. 15:47-58.
- Fayad, Y.H.; Esmat A. Kares and Ibrahim, A.A. (1990): Insecticidal application against the cotton leaf-worm and boll-worms in relation to the population of predators and infestation with other pests in cotton fields. Egypt.J.Appl.Sci,5 (6):51-63.
- Legaspi, B.A., Sterling, W.L.; Hartstack, A.W. and Dean, D.A.(1989): Testing the interactions of pest predator plant components of the TEXCIM model. Environ. Entomol. 4:157 163.
- Ibrahim, A.A. and Fayad, Y.H. (1981): The effect of some new insecticides of bollworms on the number of predators in cotton fields. Proc. 1st Conf. Pl. Prot. Res. Ins. 2:349-375).
- Jones Dick (1983). The Larousse Guide to Spiders.pp.320.
- Young, O.P. and Edwards, G.B. (1990). Spiders in United States field crops and their potential effect on crop pests. (unpublished data).

حصر ودراسة تعداد العناكب الحقيقية في حقول القطن المصريه
----أحمد حسين الهنيدى ، أميرة عبدالحميد ابرهيم ، يحيى حسين فياض،
جلال محمود معوض
مركز البحوث الزراعيه – معهد بحوث وقاية النباتات – الدقى – الجيزة – مصر

درس تعداد العناكب الحقيقية بحقول القطـن غير المعاملـة بـالمبيدات بمصـر في محطتي بحوث سخا وملوى لمدة ثلاثة مواسم متتابعه ١٩٩١-١٩٩٣.

وقد تم العد وجمع العينات وتسجيل الملاحظات للعناكب الحقيقية المصاحبة لأقات القطن أسبوعيا بالمحطنين. وقد أوضحت النتائج وجود ١٧ جنسا تنتمى الى ١٠ عائلات للعناكب الحقيقيه على آفات القطن. كما تم تعريف العناكب بواسطة المختصين بجامعة نيو ميكسيكو وجامعة تكساس بالولايات المتحدة الأمريكيه والذين قسمة العناكب الحقيقيه الى أربعة مجموعات رئيسيه هى مجموعة مجموعة ومجموعة العناكب السرطانية.


وقد كان تعداد العناكب عموما عاليا في سخا خلال الموسم بينما كان مرتفعا في الشهور المتوسطة في ملوى. وقد سجل شهر أعسطس أعلى تعداد في المحطنين كما اتضح أن مجموعة Lynx تسود عن بقية المجموعات مسجلة متوسطا قدره ٧ ٤٨٪، بينما كان متوسط التعداد في العناكب الغازلة والقافزة والسرطانية هو ١٢٪ و٧ و٧ ١٣٪ و ٥ و ١٦٪ على التوالي.

ه. احد حين الميثق

767-970

Annals Of Agricultural Science, Moshtohor

Faculty of Agriculture, Moshtohor, Zagazig University (Banha - Branch)

CHEMISTRY	971-1022
DAIRY AND FOOD TECHNOLOGY	1023-1098
HORTICULTURE	1099-1176
PLANT PROTECTION	1177-1276
SOIL SCIENCE	1277-1372
أبداث باللغة العربية	11

Vol. 34 Number 3

AGRONOMY

Sept. 1996

حوليات الملوم الزراعية بمشتهر

كلية الزراعة بمشتهر

جامعة الزقازيق / فرع بنما

ISSN: 1110 - 0419

الثاث ون العدد الثالث سبتمبر ١٩٩٦م	
أبطاثه باللغة العربية	1•. 1
SOIL SCIENCE	1277-1372
PLANT PROTECTION	1177-1276
HORTICULTURE	1099-1176
DAIRY AND FOOD TECHNOLOGY	1023-1098
CHEMISTRY	971-1022
AGRONOMY	767-970
A CDOMONET	