BULLETIN OF FACULTY

OF AGRICULTURE

No. 2

UNIVERSITY OF CAIRO

1987

"Vol. 38

UNIVERSITY OF CAIRO

GIZA, A.R.E

Bull. Fac. of Agric., Univ. of Cairo, Vol.38, No.2(1987)

BIOCONTROL STUDIES ON MAIZE BORERS IN EGYPT

1. The parasitism of Bracon brevicornis Wesm.
(Braconidae: Hymenoptera) on the hibernating larvae of Ostrinia nubilalis Hbn. (Pyraustidae: Lepidoptera).

(Received: 1.4.1987)

Вy

S.I. El-Sherif;*
A.H. El-Hinady *** and F.N. Zaki;**
M.E. Saleh **

- * Faculty of Agriculture, Cairo University.
- ** National Research Centre, Dokki, Egypt.

 *** Agricultural Research Centre, Giza, Egypt.

ABSTRACT

The population fluctuations of the hibernating larvae and pupae of O.nubilalis in maize stubble and crop remains were studied at Sakha region, Kafr El-Shekh Governorate throughout the two successive hibernation seasons 1983/84 and 1984/85. Population level was comparatively higher during the former season than during the latter one. Iarval population was more or less stable during winter (December - February) then decreased gradually in March and April and larvae dissppeared by mid-May at most. Pupae began to occur in February and their number increased gradually reaching a peak by early May. Moth emergence occured mainly during May.

For both seasons of investigation, B. brevicornis was the sole insect ectoparasite emerged from the hibernating lervae. The rate of its parasitism was low during winter (1-10%) and high in March (34%) and April (80%). A maximum parasitism of 96% was recorded by mid-May 1984. Mass production and supervised field release of B. brevicornis during spring and not later than mid-April are speculated as a possible approach for suppressing the population of O. nubilalis larvae hibernating in maize stuble and crop remains.

INTRODUCTION

The European corn borer, Ostrinia nubilalis Hbn. (Pyraustidae: Lepidoptera), is one of the insect pests threatening maize (Zea maize L.) in Egypt. Full-grown larvae hibernat in stuble and crop remains. El-Saadany (1965) and El-Sherif (1965) reported that larval hibernation starts in November and ends by June while Ismail (1968) mentioned that it may begin as early as of mid-August. Moths emerging from hibernating larveae are the main source of new infestation (Isa et al., 1969 and Mostafa, 1981).

Several biomortality factors may act upon the hibernating larvae of 0.nubilalis throughout hibernation period. As a matter of fact, local literature on such an aspect of the insect's biology seems to be very few and rather scanty Thompson and Parker (1928) recorded Bracon brevicornis as parasite on the hibernated larvae in Hungary. Barker et al. (1949) observed that parasitism by B.brevicornis on hibernating larvae in U.S.A. reached 62%. Platia and Maini (1976) reported Lydella thompsoni Herting, Eriborus terebraa, Grov. Diadegma terebrance, Chelonus annalipes Wesm., Lampoplex alkae Ellinger & Bacht taken (= Sinophorus alkae) and Bracon hebitor Say. as responsible for a combined parasitism of 19% on the hibernation generation in Italy.

In 1983, the Supreme Council of Egyptian Universities funded a research program on the biological control of maize borers (Grant No. 830101 Mini). The role of biocontrol agents on the hibernating larvae was among the objectives of that program. This paper presents the knowledge achieved from a two-season investigation on population changes of the hibernating larvae and pupae of *O. nubilalis* and the associated ectoparasite *B. brevicornis*.

MATERIALS AND METHODS

Work was carried out at the Agricultural Research Station. at Sakha, Kafr El-Shikh governorate during the two successive hibernation seasons 1983/84 and 1984/85. For every season, (November - May) maize stalks heavily infested with O.nubilalis were collectted in November. Bunches of 100 stalks each, were heaped outdoors and leaf exposed to nature. Starting from December, one bunch (100 stalks was randomly taken from the heap and dissected for larvae and/or pupae of O.nubilalis.

Such dissections were repeated twice a month until the end of May. Collected larvae and/or pupae were individually introduced into 1x3" glass vials blocked with cotton wool then kept for observation under laboratory conditions. Vials were examined daily to record normal pupation and moth emergence as well as the emergence of the parasites.

RESULTS

1. Population fluctuation of hibernating larvae and pupae :

The numbers of the hibernating larvae and pupae of O.nubilalis collected from the dissected maize stalks in 1983/84 and 1984/85 hibernation seasons are shown in Table (1). This table clearly indicates the general trend of a relatively higher population level in the former season than in the latter one.

In 1983/84, larval count slightly oscillated between 622 and 778/100 stalks during the period early December-early February. Larval population decreased gradually thereafter until mid-April. Pupation was first recorded in February then increased steadily to a peak of 75/100 stalks by early May. Decrease in larval population was rather sharp after mid-April and continued until only 78 larvae/100 stalks were collected by mid-May. Moth emergence began in May and was accompanied by a subsequent decline in pupal population to 18/100 stalks by the middle of the same month.

The pattern of change in larval and pupal populations of *O. mubilalis* in 1984/85 was more or less similar to that of 1983/84. During the winter months (December - February), larval count varied from 350 to 528/100 stalks and a single pupa was recorded in February. Larval population decreased gradually thereafter to 330-300,250-140 and zero/100 stalks in March, April and May, respectively. Pupation rate was markedly low all the season round as 1-3 and 5-15 pupae/100 stalks were collected in March and April, respectively.

Data in Table (1) lead to the conclusion that the population of 0. nubilalis hibernating larvae in maize stubble and crop remains keeps more or less stable throughout winter months (December - February), by early spring, i.e. starting from March, pupation begins and a gradual decrease in larval population occurs until the larvae disappear by mid-May at most. Data further refer that few pupae were formed in March and the bulk of pupation takes place between early April and early May.

Table (1): Numbers of hibernating larvae and pupae of *O. nubilalis* in to by *B. brevicornis* during 1983/84 and 1984/85 hibernation seasons. in maize stalks

			Nu	Number/100 stalks	talks			
Date of		1983/84	#			1984/85		
Sampling		Larvae	-			Larvae		
	Healthy	Parasiti- zed	Total	Pupae	Healthy	Parasiti- zed	Total	
	·			1	504	18	522	0
Dec. 15	771	N 1	773	0	0111	9	61111	0
į		•	10	>	¥61	ب	514	0
Jan. 1	791	· u	610	ɔ c	316	28	344	0
Ţ	0			•) 0	ລ	411	
Feb. 1	657	w	000	• c) (ນ (0	185	0
15	628	17	645	ا ـــ	343	9	, ,	, (
	520	27	547	_	310	18	328	O
15	650	15	665	2	258	37	242	U
	70	л	475	25	159	85	1112	15
Apr. 15	105 C	63	468	66	49	88	137	1 5
	-	ţ		İ	1	3	ა ი	л
May. 1		120	173	75	7	ω Ν	ر د د	5 U
15	w	75	78	18	c	c	c	

Percentages of parasitism * by B. brevicornis on the hibernating larvae of 0. nubilalis during 1983/84 and 1984/85 hibernation seasons. Table (2):

	Winter Samples	Samples		Spring Samples	ဇ
Date of Sampling	% par	% parasitism	Date of Sampling	% parasitism	sitism
	1983/84	1984/85		1983/84	1984/85
December	0.00	3.50	March	46.4	5.49
	0.26	2.00		2.30	12.54
January	0.38	10.30	April	1.05	34.24
	0.16	8.14		13.46	64.23
February	84.0	7.30	May	69.63	22.05
	2.64	10.16		96.15	00.00

Based on larval populations shown in Table (1).

2. The rate of parasitism by B. brevicornison hibernating larvae:

For both seasons of this investigation, the ectoparasite Bracon brevicornis. (Braconidae: Hymenoptera) emerged from the hibernating larvae of O. nubilalis. No other insect parasites could be recorded from either larvae or pupae. The halfmonthly rates of parasitism by B. brevicornis on larvae during 1983/84 and 1984/85 hibernation seasons are given in Table (2).

In 1983/84 season, parasitism was relatively low till early April 1-3%, then jumped to 13% by the end of that month. In May the rate of parasitism increased progressively to 96%. As for 1984/85 season, parasitism during winter ranged 2-10% then increased to 34% and 80% in March and April, respectively.

Such results infer that B. brevicornis may act as an active and efficient ectoparasite on O. nubilalis larvae throughout hibernation period. The parasite seems to be less active during winter while in spring it consumes a sigificant portion of larvae (80-96%). Such findings seem to agree with Temerak (1976) who reported B. brevicornis as a parasite on the hibernating larvae of O. nubilalis from October till February.

From an applied point of view, attempts to promote the efficacy of **B. brevicornis** in spring (March-May) through mass-production and supervised field-releases appear as an effective possible approach to cut down the population of the hibernating larvae of **O. nubilalis** in maize stubble and crop remains left in the field or stored on the roofs of farmers houses and subsequently, minimize new infestations by the pest. The appropriate timing for such releases is speculated to occur no later than mid-April.

REFERENCES

- Barker, W.A.; W.G. Bradley, and C.A. Clark (1949): Biological control of the European corn borer in the United States. USDA. Tech. Bull. No. 983, pp. 185.
- El-Sadaney, G.B. (1965): Ecological and biological studies on some maize pests. M.Sc. Thesis, Faculty of Agric. Ain Shams University.
- El-Sherif, S.I. (1965): Studies on the corn borers in Alexandria district. Ph.D. Thesis, Faculty of Agric. Alex. Univ.

- Isa, A.L.; W.H. Awadallah and H.N. Wanas (1969): Distribution of overwintering corn borers larvae in residues of maize plants. FAO Plant. Bull. 17: 112-113.
- Ismail, I.I. (1968): Studies of ecology, biology and control of corn borers in Giza region. Ph.D. Thesis, Fac. of Agric., Cairo Univ.
- Mostafa, F.F. (1981): Biological and ecological studies on the pink borer Sesamía cretica Led. (Lepid.: Noctuidae). Ph.D. Thesis, Fac. of Agric., Cairo Univ.
- Platia, G. and S.Maini (1976): Studies on the insect parasites of Ostrinia nubilalis Hub. (Lepid.: Pyralidae) in the Forli district. Bullettino Dell' Instituto di Entomologia della Universita degli Studi de Bologna (1973/1975 recd. 1976) 32, 189-202. (R.A.E./A., (1977) 65 (5) 2611).
- Temerak. S.A. (1976): Studies on certain mortality factors affecting distribution and abundance of sugarcane borers in Upper Egypt. Ph.D. Thesis, Fac. of Agric. Assiut Univ.
- Thompson, W.R., and H.L. Parker. (1928): The European corn borer and its controlling factors in Europe. USDA, Tech. Bull. No. 59. pp 63.

دراسات على المكافحة الحيوية لثاقبات الذرة في مصر

البائته لدودة الذرة الاوربية Bracon brevicornis على البرقات

سيسر الشسريف سفايز نظيسر سأحبد الهنيدى سمعبود سسسالم

تماب نباتات الذرة الشامية في مصر بدودة الذرة الأوربية ويتتبع تقلبات تعداد من عائلة Pyraustidae التابعة لحرشفية الأجنحة ويتتبع تقلبات تعداد البرقات البائنة والعذارى في أحطاب الذرة الشامية خلال موسى البيات الشتوى البرقات البائنة والعذارى في أحطاب الذرة الشامية خلال موسى البيات الشتوى البرقات البائنة خلال الموسم الأول أعلا نسبيا منه خلال الموسم الثانى و وصفة عامة كان تعداد البرقات البائنة عابتا تقريبيا خلال شهور الشتاء (ديسبر - فبراير) ثم تناقص تدريجيا في الربيع خلال شهور مارس وابريل إلى أن امتنعت البرقات بسن الاحطاب تباما قبل منتصف مايو وقد بدأ تكوين العذارى خلال شهر فبرايس وتزايدت أعداد ها تدريجيا حتى أوائل مايو في حين خرجت أغلب الفرشات خلال شهر مايو و

ولوحظ أن الطغيل <u>Bracon</u> <u>brevicornis</u> من عائلة <u>Bracon</u> التابعة لرتبة غشائية الأجنحة هو الطغيل الحشرى الوحيد الذى خرج من اليرتات البائته خلال موسمى الدراسة وقد بلغ معدل تطغل هذا الطغيل أثنا مهور الشتا الله خلال موسمى الدراد هذا المعدل إلى ٣٤٪ خلال شهر مارس و ٨٠٪ خـــلال شهر ابريل وبلغ حده الاقصى 1٦٪ في منتصف ما يو ١١٨٤٠

وتوحى النتائج المتحصل عليها بأن الاهتمام بالانتاج الموسع الحقلى للطفي الدين المنطقة وتوحى النتائج المتحصل عليها بأن الاهتمام بالانتاج الموسع الاكثريمكن أن يكون B. brevicornis خلال موسم الربيع وقبل منتصف ابريل على الاتحطاب أثناء فترة أسلها مقبولا للمكافحة يؤدى لخفض تعداد اليرقات البائنة في الأحطاب أثناء فترة البيات الشتوى ومن ثم إلى تقليل مستوى الاصابة بالحشرة في الموسم التالى •

البجلة العلبية لكلية الزراعة _ جامعة القاهرة _ البجلد (٣٨) العدد الثاني (٢٨) .

and some thinks

المجلة العلمية

لكلترا لزراعة

جامعترالقاهق

العددة

للعيام ١٩٨٧

المجلد ٣٨

كلةِ الزراعة . جامعة القاهرة جمهورية مصرالعربية