A Survey for Pink Hibiscus Mealybug, *Maconellicoccus hirsutus* (Green) and its Parasitoids in Egypt, Spain and Morocco

*Department of Entomology, University of California, USA

**Plant Protection Research Institute, Agricultural Research Centre, Dokki, Giza, Egypt

*** Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia

**** U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Riverdale, MD, USA

(Received, February 15, 2003; Accepted, February 25, 2003)

ABSTRACT

A search for the pink hibiscus mealybug (PHMB), *Maconellicoccus hirsutus* (Green) and its parasitoids were conducted in Egypt, Spain, and Morocco in 2000-2001. Ornamental hibiscus host plants were found abundantly in all 3 countries but PHMB was found only in Egypt. Among several parasitoids recovered from PHMB, a gregarious parasitoid, *Allotropa sp. near mecriada* (Walker) (Hymenoptera: Platygasteridae) was by far the most abundant parasitoid attacking PHMB in Egypt. Primary parasitoids made up 94.9% of total parasitoids emerging and 5.1% were secondary. A potential for a successful introduction biological control program against this pest in California is enhanced by the collaborative efforts of personnel from several agencies: the Plant Protection Institute of Egypt, the University of California at Riverside, CDFA- Biological Control Program, and USDA-APHIS.

Key Words: Survey, Pink hibiscus mealybug, Parasitoids, Egypt, Spain, Morocco.

Problem

The pink hibiscus mealybug (PHMB), *Maconellicoccus hirsutus* (Green) is an exotic, newly introduced pest to California. It was first found on mulberry in the Imperial Valley, California, in August 1999 and originally was believed to be an ornamental pest. However, it has a host range of over 200 plant species including many plants important to agriculture as well as ornamental hosts in California such as grapes, cotton, corn, chrysanthemums, roses, and mulberries (USDA-APHIS 1997).

In this paper, we summarize a collaborative effort among the 4 agencies: the Plant Protection Institute of Egypt, the University of California at Riverside, CDFA- Biological Control Program, and USDA-APHIS, our findings on a survey for natural enemies in Egypt during April-November 2000 and a survey for PHMB in Spain and Morocco in July 2001. We initiated this search for natural enemies of PHMB because of the threat that this pest poses to California agriculture and to the ornamental industry. In the Caribbean Islands where the pest was recently introduced, damage losses have been reported to exceed $3.5 million per year in Grenada and $125 million a year in Trinidad and Tobago (USDA-APHIS 1997).

A biological control program is essential also because historically, insecticides and oils have not been effective in controlling this pest (USDA-APHIS 1997). The parasitoids' widespread association with PHMB under a wide range of climates and habitats similar to those in California provides evidence of their potential to reduce PHMB numbers in California. Our survey was conducted initially in Egypt, because PHMB was also introduced there in the 1940's where it initially became the most injurious mealybug species, recorded attacking 60 host plants (Assam 1982). In recent years PHMB has not been a pest in Egypt, being under effective biological control mostly by parasitoids (Hamed et al. 1991; Kamal et al. 1999; Meyerdrick 2000; Hendawy unpublished data, personal communication, following up on the earlier studies of Moursi 1948 a, b, c, d).

The survey was extended to Spain and Morocco in 2001 to search for additional PHMB parasitoid species or biotypes (Gonzalez et al. 1979; Gonzalez 1988). A search in several geographic areas was based on our findings in previously searching for parasitoids of other introduced exotic pests. We found different parasitoid species attacking pests in different geographical areas and also found genetic, behavioral, and bio-systematic differences among populations of parasitoids described under one species name (Gonzalez et al. 1978; Gonzalez et al. 1980; Gonzalez et al. 1990; Unruh et al. 1989).

Survey for Parasitoids

Samples of 20-25 plants infested with PHMB were collected biweekly from representative governorates of the three agro-ecosystems in Egypt: Upper-, Middle and Lower Egypt (Delta area of the Nile Valley), during the period from April through November 2000. Samples were kept under laboratory conditions (25±2°C and 60±5% R.H.) until emergence of parasitoid adults. Parasitoid species were counted, classified, preserved in 70% alcohol and sent to S. Triapitsyn and V. Triapitzin for identification. Voucher specimens are deposited in the Entomology Research Museum, Department of Entomology, University of California, Riverside, USA and in the Plant Protection Research Institute, Department of Biological Control, Giza, Egypt.

The survey in Egypt included 11 governorates (latitudes 24.02 to 31.2 N and 29.53 to 32.53 E) having a climate very similar to that of southern California desert and inland areas. Because many of the economic host plants were treated with insecticides, most of the sampling was taken from ornamental hibiscus plants, which normally are not treated with insecticides. Ninety one percent of plants sampled were hibiscus, 2% were okra and 7% included; oleander, mulberry and guava. Among plants sampled, hibiscus consistently had more
Table (1): Total numbers of most abundant parasitoids recovered from the pink hibiscus mealybug, *Maconellicoccus hirsutus* (Green) in Egypt, 2000

<table>
<thead>
<tr>
<th>Governorate</th>
<th>Total No. of samples</th>
<th>No. of parasitized</th>
<th>Primary A</th>
<th>Primary B</th>
<th>Primary Total</th>
<th>Hyper Parasitoids C</th>
<th>D</th>
<th>E</th>
<th>Total</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Upper Egypt</td>
<td></td>
</tr>
<tr>
<td>Sohag</td>
<td>19</td>
<td>18</td>
<td>296</td>
<td></td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>Assuit</td>
<td>24</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menia</td>
<td>2</td>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>512</td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td>522</td>
<td></td>
</tr>
<tr>
<td>2- Middle Egypt</td>
<td></td>
</tr>
<tr>
<td>Beni-Suef</td>
<td>25</td>
<td>160</td>
<td>496</td>
<td>15</td>
<td>113</td>
<td>128</td>
<td></td>
<td></td>
<td>624</td>
<td></td>
</tr>
<tr>
<td>Giza</td>
<td>54</td>
<td>84</td>
<td>490</td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td>506</td>
<td></td>
</tr>
<tr>
<td>Fayoum</td>
<td>39</td>
<td>208</td>
<td>663</td>
<td>35</td>
<td>7</td>
<td>42</td>
<td></td>
<td></td>
<td>705</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>118</td>
<td>452</td>
<td>1649</td>
<td>66</td>
<td>120</td>
<td>186</td>
<td></td>
<td></td>
<td>1835</td>
<td></td>
</tr>
<tr>
<td>3- Lower Egypt (Delta)</td>
<td></td>
</tr>
<tr>
<td>Qalubia</td>
<td>8</td>
<td>8</td>
<td>200</td>
<td>15</td>
<td>1</td>
<td>16</td>
<td></td>
<td></td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>Menoufia</td>
<td>16</td>
<td>357</td>
<td>841</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td>6</td>
<td>847</td>
<td></td>
</tr>
<tr>
<td>Gharbía</td>
<td>6</td>
<td>32</td>
<td>642</td>
<td>2</td>
<td>4</td>
<td>41</td>
<td></td>
<td></td>
<td>646</td>
<td></td>
</tr>
<tr>
<td>Dakahlia</td>
<td>2</td>
<td>78</td>
<td>83</td>
<td>2</td>
<td>4</td>
<td>103</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Shartis</td>
<td>1</td>
<td>41</td>
<td>103</td>
<td>5</td>
<td>26</td>
<td>1895</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>516</td>
<td>1869</td>
<td>20</td>
<td>5</td>
<td>222</td>
<td></td>
<td></td>
<td>4252</td>
<td></td>
</tr>
<tr>
<td>Grand total</td>
<td>196</td>
<td>1077</td>
<td>4030</td>
<td>86</td>
<td>121</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary Parasitoids:
A: *Allostropa nr. mecria*
B: *Gyranusoides indica*

Hyper Parasitoids:
C: *Chactecerus sp.*
D: *Marietta sp.*
E: *Pachyneuron sp.*
Fig. (1): Monthly abundance of primary (A) and secondary (B) parasitoid species recovered from pink hibiscus mealybug in different regions in Egypt, 2000
PHMB, and more plants infested. There were a total of
196 samples collected throughout the period from 6 host
plants. Out of the total samples, 66.3% of the PHMB were
parasitized.

In Egypt, we found 8 primary and 4 secondary
parasitoid species. The primary parasitoid species are:
Allotropa sp. near mecrida (Walker) (Platygastridae),
Gyransuloidea indica Shafee, Alam and Agarwal,
Leptomastidea abnormis (Girault), *Leptomastix algirica*
Trjaptitzin, *Leptomastix sp.*, *Anagrus kamali* Moursi,
Anagrus sp., and *Clausenia sp.* (all Encyrtidae). The
secondary parasitoids are *Chartocerus sp.* (Signiphori-
dae), *Marieta sp.* (Aphelinidae), *Paclieneuron sp.*
(Pteromalidae), and *Prochiloneurus bolvarti* Mercet
(Encyrtidae). Several encyrtid species noted above were
present from the male sex only; therefore their positive
identification to the species will be possible only after the
females are obtained. Dr. Lubomir Masler, Canadian
National Collection of Insects, Ottawa, and Ontario,
Canada, confirmed identification of *Allotropa sp. near
mecrida*. To verify a positive identification as *mecrida*, a
comparison with these specimens of the type *mecrida*
at the British Museum of London is required.

The survey for PHMB in 2001 in Spain and Morocco
was in July-August, and concentrated largely in the hot
and dry areas of southern Spain (18 locations in 10
provinces from Valencia to Algeciras), and in inland and
southern areas in Morocco (9 locations from Marrakech
to Tangier) on ornamental hibiscus host plants. The
survey was focused on hibiscus because it was by far the favorite
host plant for PHMB found in Egypt in 2000. Although
hibiscus is found throughout southern Spain and in inland
and southern Morocco, we did not find PHMB or any
other mealybugs on many plants from several places in
each location. There were also, no symptoms of damage.
These findings are difficult to believe because of the
relatively close proximity of these 2 countries to Egypt
where we found PHMB almost everywhere hibiscus were
present. Nevertheless, the consistency in our findings
from many samples in many areas may provide convinc-
ing evidence of the absence of PHMB on hibiscus from
these 2 countries.

Promising New Parasitoid

Distribution and abundance of the most common
parasitoid species of PHMB in the governorates sampled
in Egypt are numerically summarized in table 1. Relative
numbers of parasitoids recovered in the 3 main growing
areas are shown graphically in Fig. (1). Primary paras-
toids made up 49.9% of total parasitoids emerging, and
5.1% were secondary. PHMB and its parasitoids were
found from April to November on hibiscus in different
areas. Highest populations of the pest and parasitoids
occurred during September. Among primary parasitoids,
Allotropa sp. near mecrida was by far the most abundant
(highest numbers) in all 3 major survey areas, comprising
69.5% of total parasitoids recovered. *Gyransuloidea indica*
was the only other parasitoid recovered in significant
numbers, comprising 25% of the total parasitoids
recovered.

We believe that this species of *Allotropa* collected in
Egypt has significant potential for reducing PHMB in
California for several reasons. First, this is a gregarious
parasitoid; thus many parasitoids are produced from each
host whereas solitary parasitoids only produce one
parasitoid from each host. A second important character-
istic is that we found it under a wide range of temperature
and relative humidity conditions from all areas where
PHMB was present (Table 1). This included areas where
habitats differed appreciably, especially in crops grown
and in farming practices.

From our results it is evident that this *Allotropa sp.
near mecrida* is closely associated with PHMB under a
wide range of environmental conditions that are similar
to those in inland valleys and deserts of southern and central
California.

Information in this paper has additional importance
with approval from USDA and the California Department
of Food and Agriculture for rearing and releasing
Allotropa sp. nr. mecrida in California. Releases against
PHMB are anticipated to begin in April 2003.

Collaborative Efforts

The potential for a successful biological control
program against PHMB using this species of *Allotropa*
is enhanced by the collaborative efforts of agencies,
institutions and personnel involved. Personnel from the
Plant Protection Institute in Egypt in collaboration with
personnel from the University of California are conduct-
ing the survey for parasitoids in Egypt and other coun-
tries. Personnel from USDA-APHIS are receiving
parasitoids from Egypt under quarantine conditions, to
assure pure parasitoid cultures providing a basis for
release from quarantine. Parasitoids released from
quarantine are sent to personnel from the California
Department of Food and Agriculture - Biological Control
Program where they will be mass reared, released and
evaluated in California.

REFERENCES

Assem, S.M. 1982. Studies on certain coccid pests of
ornamental plants in Egypt. M. Sc. Thesis, Faculty of
Agric., Ain Shams University, Egypt, 160 pp.

Awadallah, K.T.; A. Ibrahim; M.A.; Atia; R. Angel and
S.M. Nada. 1999. Survey of mealybug parasitoids and
their associated hyperparasitoids on certain ornament-
al host plants at Giza region. Bull. Ent. Soc. Egypt,

Geographical distribution of Aphidiidae (Hymenoptera)
imported to California for biological control of
Acrythosiphon kondoi and *Acrystosiphon pisum* [Ho-

1979. Biotype discrimination and its importance to
biological control. Pp.129-137 In: Genetics in Rela-
tion to Insect Management. Hoy and J. McKeve Jr.,

Gonzalez, D.; L. Erez, M. Esmailli; A.H. El Heneidy and
I. Kaddou. 1980. Distribution of *Bathyplectes curculi-
onis* and *Bathyplectes anurus* (Hymenoptera: Ichne-
monidae) from *Hypopa brunneipennis* Boh. (Col.:
Curculionidae) on alfalfa in Egypt, Iraq, and Iran. Entomophaga 25 (2): 111-121.

